Optimization landscape in the simplest constrained random least-square problem
نویسندگان
چکیده
Abstract We analyze statistical features of the ‘optimization landscape’ in a random version one simplest constrained optimization problems least-square type: finding best approximation for solution system M linear equations N unknowns: ( k , x ) = b 1, …, on -sphere 2 . treat both -component vectors and parameters as independent mean zero real Gaussian variables. First, we derive exact expressions number stationary points loss function overcomplete case > framework Kac-Rice approach combined with matrix theory Wishart ensemble. Then perform its asymptotic analysis → ∞ at fixed α / 1 various regimes. In particular, this allows to extract large deviation density smallest Lagrange multiplier λ min associated problem, way find most probable value. This can be further used predict minimal value E min ∞. Finally, develop an alternative based replica trick conjecture form ≫ any ratio 0. As by-product, compatibility threshold c < which is beyond becomes typically incompatible.
منابع مشابه
Simplest random K-satisfiability problem
We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of gammaN random boolean constraints which are to be satisfied simultaneously by N logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local s...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
On the linear least-square prediction problem
An efficient algorithm is derived for the recursive computation of the filtering and all types of linear leastsquare prediction estimates (fixed-point, fixed-interval, and fixed-lead predictors) of a nonstationary signal vector. It is assumed that the signal is observed in the presence of an additive white noise which can be correlated with the signal. The methodology employed only requires tha...
متن کاملPeak-constrained least-squares optimization
We presented the basic concepts for peakconstrained least-squares (PCLS) optimization in previous papers. We present advanced PCLS optimization concepts in this paper.
متن کاملSolving the L1 regularized least square problem via a box-constrained smooth minimization
In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property ”the dual of dual is primal” holds for the L1 regularized least square problem. A solver for the smooth pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A
سال: 2022
ISSN: ['1751-8113', '1751-8121']
DOI: https://doi.org/10.1088/1751-8121/ac6d8e